Carl B. Boyer
John Wiley & Sons Inc; International Ed edition | 1968 | 738 páginas
online: archive.org
Contents
Chapter I. Primitive Origins
Chapter II. Egypt
Chapter III. Mesopotamia
Chapter IV. Ionia and the Pythagoreans
Chapter V. The Heroic Age
Chapter VI. The Age of Plato and Aristotle
Chapter VII. Euclid of Alexandria
Chapter VIII. Archimedes of Syracuse
Chapter IX. Apollonius of Perga
Chapter X. Greek Trigonometry and Mensuration
Chapter XI. Revival and Decline of Greek Mathematics
Chapter XII. China and India
Chapter XIII. The Arabic Hegemony
Chapter XIV. Europe in the Middle Ages
Chapter XV. The Renaissance
Chapter XVI. Prelude to Modern Mathematics
Chapter XVII. The Time of Fermat and Descartes
Chapter XVIII. A Transitional Period
Chapter XIX. Newton and Leibniz
Chapter XX. The Bernoulli Era
Chapter XXI. The Age of Euler
Chapter XXII. Mathematicians of the French Revolution
Chapter XXIII. The Time of Gauss and Cauchy
Chapter XXIV. The Heroic Age in Geometry
Chapter XXV. The Arithmetization of Analysis
Chapter XXVI. The Rise of Abstract Algebra
Chapter XXVII. Aspects of the Twentieth Century
General Bibliography 679
Appendix: Chronological Table 683
Index 697