Roberto Bonola
Chicago Open Court Pub. Co | 1912
online: archive.org
PDF - 11,2 Mb
4shared.com
Examines various attempts to prove Euclid's parallel postulate — by the Greeks, Arabs and Renaissance mathematicians. Ranging through the 17th, 18th, and 19th centuries, it considers forerunners and founders such as Saccheri, Lambert, Legendre, W. Bolyai, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky. Includes 181 diagrams.
Table of Contents
Chapter I. The Attempts to prove Euclid's Parallel Postulate. | |||||||
1-5. The Greek Geometers and the Parallel Postulate | |||||||
6. The Arabs and the Parallel Postulate | |||||||
7-10. The Parallel Postulate during the Renaissance and the 17th Century | |||||||
Chapter II. The Forerunners on Non-Euclidean Geometry. | |||||||
11-17. GEROLAMO SACCHERI (1667-1733) | |||||||
18-22. JOHANN HEINRICH LAMBERT (1728-1777) | |||||||
23-26. The French Geometers towards the End of the 18th Century | |||||||
27-28. ADRIEN MARIE LEGENDRE (1752-1833) | |||||||
29. WOLFGANG BOLYAI (1775-1856) | |||||||
30. FRIEDRICH LUDWIG WACHTER (1792-1817) | |||||||
30. (bis) BERNHARD FRIEDRICH THIBAUT (1776-1832) | |||||||
Chapter III. The Founders of Non-Euclidean Geometry. | |||||||
31-34. KARL FRIEDRICH GAUSS (1777-1855) | |||||||
35. FERDINAND KARL SCHWEIKART (1780-1859) | |||||||
36-38. FRANZ ADOLF TAURINUS (1794-1874) | |||||||
Chapter IV. The Founders of Non-Euclidean Geometry (Cont.). | |||||||
39-45. NICOLAI IVANOVITSCH LOBATSCHEWSKY (1793-1856) | |||||||
46-55. JOHANN BOLYAI (1802-1860) | |||||||
56-58. The Absolute Trigonometry | |||||||
59. Hypotheses equivalent to Euclid's Postulate | |||||||
60-65. The Spread of Non-Euclidean Geometry | |||||||
Chapter V. The Later Development of Non-Euclidean Geometry. | |||||||
66. Introduction | |||||||
Differential Geometry and Non-Euclidean Geometry | |||||||
67-69. Geometry upon a Surface | |||||||
70-76. Principles of Plane Geometry on the Ideas of RIEMANN | |||||||
77. Principles of RIEMANN'S Solid Geometry | |||||||
78. The Work of HELMHOLTZ and the Investigations of LIE | |||||||
Projective Geometry and Non-Euclidean Geometry | |||||||
79-83. Subordination of Metrical Geometry to Projective Geometry | |||||||
84-91. Representation of the Geometry of LOBATSCHEWSKY-BOLYAI on the Euclidean Plane | |||||||
92. Representation of RIEMANN'S Elliptic Geometry in Euclidean Space | |||||||
93. Foundation of Geometry upon Descriptive Properties | |||||||
94. The Impossibility of proving Euclid's Postulate | |||||||
Appendix I. The Fundamental Principles of Statistics and Euclid's Postulate. | |||||||
1-3. On the Principle of the Lever | |||||||
4-8. On the Composition of Forces acting at a Point | |||||||
9-10. Non-Euclidean Statics | |||||||
11-12. Deduction of Plane Trigonometry from Statics | |||||||
Appendix II. CLIFFORD'S Parallels and Surface. Sketch of CLIFFFORD-KLEIN'S Problems. | |||||||
1-4. CLIFFORD'S Parallels | |||||||
5-8. CLIFFORD'S Surface | |||||||
9-11. Sketch of CLIFFORD-KLEIN'S Problem | |||||||
Appendix III. The Non-Euclidean Parallel Construction and other Allied Constructions. | |||||||
1-3. The Non-Euclidean Parallel Construction | |||||||
4. Construction of the Common Perpendicular to two non-intersecting Straight Lines | |||||||
5. Construction of the Common Parallel to the Straight Lines which bound an Angle | |||||||
6. Construction of the Straight Line which is perpendicular to one of the lines bounding an acute Angle and Parallel to the other | |||||||
7. The Absolute and the Parallel Construction | |||||||
Appendix IV. The Independence of Projective Geometry from Euclid's Postu | |||||||
1. Statement of the Problem | |||||||
2. Improper Points and the Complete Projective Plane | |||||||
3. The Complete Projective Line | |||||||
4. Combination of Elements | |||||||
5. Improper Lines | |||||||
6. Complete Projective Space | |||||||
7. Indirect Proof of the Independence of Projective Geometry from the Fifth Postulate | |||||||
8. BELTRAMI'S Direct Proof of this Independence | |||||||
Appendix V. The Impossibility of proving Euclid's Postulate. An Elementary Demonstration of this Impossibility founded upon the Properties of the System of Circles orthogonal to a Fixed Circle. | |||||||
1. Introduction | |||||||
2-7. The System of Circles passing through a Fixed Point | |||||||
8-12. The System of Circles orthogonal to a Fixed Circle | |||||||
Index of Authors | |||||||
The Science of Absolute Space and the Theory of Parallels |
Nenhum comentário:
Postar um comentário